x86_64-based ECU Configuration#
Deploy Autoware on Intel/AMD platforms for LSA vehicles.
CUDA and GPU Configuration#
1. CUDA Toolkit Installation#
For x86_64-based systems, CUDA must be installed manually. Visit the NVIDIA CUDA Toolkit Archive to find the appropriate version for your system.
Recommended Installation Method: deb (network)
Here's an example of installing CUDA Toolkit 12.3 using the network deb method:
# Step 1: Download and install the cuda-keyring package
# Visit https://developer.nvidia.com/cuda-toolkit-archive and select:
# - Operating System: Linux
# - Architecture: x86_64
# - Distribution: Ubuntu
# - Version: 22.04
# - Installer Type: deb (network)
# Install the keyring
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
# Step 2: Update package lists
sudo apt update
# Step 3: Install CUDA Toolkit
sudo apt install -y cuda-toolkit-12-3
# Step 4: Verify installation
nvidia-smi
nvcc --version
2. Install Additional GPU Libraries#
# Install cuDNN (after CUDA toolkit is installed)
# Visit https://developer.nvidia.com/cudnn for the latest version
sudo apt install -y cudnn
# Install TensorRT
sudo apt install -y tensorrt
3. Configure GPU Environment#
# Add CUDA to PATH
echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
# Verify GPU is accessible
nvidia-smi
Performance Monitoring#
System Monitoring Tools#
# CPU and system monitoring
htop
# GPU monitoring
nvtop
# ROS 2 specific monitoring
ros2 run rqt_top rqt_top
# Network monitoring
iftop
ROS 2 Performance Analysis#
# Monitor topic frequencies
ros2 topic hz /sensing/lidar/concatenated/pointcloud
# Check node CPU usage
ros2 run rqt_top rqt_top
# Analyze communication graph
ros2 run rqt_graph rqt_graph
Next Steps#
See Sensor Configuration Guide for detailed sensor setup.