IA-LIO-SAM#
What is IA-LIO-SAM?#
- IA_LIO_SLAM is created for data acquisition in unstructured environment and it is a framework for Intensity and Ambient Enhanced Lidar Inertial Odometry via Smoothing and Mapping that achieves highly accurate robot trajectories and mapping.
Repository Information#
Original Repository link#
https://github.com/minwoo0611/IA_LIO_SAM
Required Sensors#
- LIDAR [Velodyne, Ouster]
- IMU [9-AXIS]
- GNSS
ROS Compatibility#
- ROS 1
Dependencies#
-
ROS (tested with Kinetic and Melodic)
-
for ROS melodic:
sudo apt-get install -y ros-melodic-navigation sudo apt-get install -y ros-melodic-robot-localization sudo apt-get install -y ros-melodic-robot-state-publisher
-
for ROS kinetic:
sudo apt-get install -y ros-kinetic-navigation sudo apt-get install -y ros-kinetic-robot-localization sudo apt-get install -y ros-kinetic-robot-state-publisher
-
-
GTSAM (Georgia Tech Smoothing and Mapping library)
wget -O ~/Downloads/gtsam.zip https://github.com/borglab/gtsam/archive/4.0.2.zip cd ~/Downloads/ && unzip gtsam.zip -d ~/Downloads/ cd ~/Downloads/gtsam-4.0.2/ mkdir build && cd build cmake -DGTSAM_BUILD_WITH_MARCH_NATIVE=OFF .. sudo make install -j8
Build & Run#
1) Build#
mkdir -p ~/catkin_ia_lio/src
cd ~/catkin_ia_lio/src
git clone https://github.com/minwoo0611/IA_LIO_SAM
cd ..
catkin_make
2) Set parameters#
- After downloading the repository, change topic and sensor settings on the config file (
workspace/src/IA_LIO_SAM/config/params.yaml
)
- For imu-lidar compatibility, extrinsic matrices from calibration must be changed.
- To enable autosave,
savePCD
must betrue
on theparams.yaml
file (workspace/src/IA_LIO_SAM/config/params.yaml
).
3) Run#
# open new terminal: run IA_LIO
source devel/setup.bash
roslaunch lio_sam mapping_ouster64.launch
# play bag file in the other terminal
rosbag play RECORDED_BAG.bag --clock
Sample dataset images#
Example dataset#
Check original repo link for example dataset.
Contact#
- Maintainer: Kevin Jung (
Github: minwoo0611
)
Paper#
Thank you for citing IA-LIO-SAM(./config/doc/KRS-2021-17.pdf) if you use any of this code.
Part of the code is adapted from LIO-SAM (IROS-2020).
@inproceedings{legoloam2018shan,
title={LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain},
author={Shan, Tixiao and Englot, Brendan},
booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
pages={4758-4765},
year={2018},
organization={IEEE}
}
Acknowledgements#
- IA-LIO-SAM is based on LIO-SAM (T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping).