Skip to content

Conclusions#

As a conclusion, lidar odometry drifts accumulatively as time goes by and there is solutions to solve that problem such as graph optimization, loop closure and using gps sensor to decrease accumulative drift error. Because of that, a SLAM algorithm should have loop closure feature, graph optimization and should use gps sensor. Additionally, some of the algorithms are using IMU sensor to add another factor to graph for decreasing drift error. While some of the algorithms requires 9-axis IMU sensor strictly, some of them requires only 6-axis IMU sensor or not even using the IMU sensor. Before choosing an algorithm to create maps for Autoware please consider these factors depends on your sensor setup or expected quality of generated map.



Package Name Explanation Repository Link Loop Closure Sensors ROS Version Dependencies
FAST-LIO-LC A computationally efficient and robust LiDAR-inertial odometry package with loop closure module and graph optimization https://github.com/yanliang-wang/FAST_LIO_LC ✓ Lidar
IMU
GPS [Optional]
ROS1 ROS Melodic
PCL >= 1.8
Eigen >= 3.3.4
GTSAM >= 4.0.0
FAST_LIO_SLAM FAST_LIO_SLAM is the integration of FAST_LIO and SC-PGO which is scan context based loop detection and GTSAM based pose-graph optimization https://github.com/gisbi-kim/FAST_LIO_SLAM ✓ Lidar
IMU
GPS [Optional]
ROS1 PCL >= 1.8
Eigen >= 3.3.4
FD-SLAM FD_SLAM is Feature&Distribution-based 3D LiDAR SLAM method based on Surface Representation Refinement. In this algorithm novel feature-based Lidar odometry used for fast scan-matching, and used a proposed UGICP method for keyframe matching https://github.com/SLAMWang/FD-SLAM ✓ Lidar
IMU [Optional]
GPS
ROS1 PCL
g2o
Suitesparse
hdl_graph_slam An open source ROS package for real-time 6DOF SLAM using a 3D LIDAR. It is based on 3D Graph SLAM with NDT scan matching-based odometry estimation and loop detection. It also supports several graph constraints, such as GPS, IMU acceleration (gravity vector), IMU orientation (magnetic sensor), and floor plane (detected in a point cloud) https://github.com/koide3/hdl_graph_slam ✓ Lidar
IMU [Optional]
GPS [Optional]
ROS1 PCL
g2o
OpenMP
IA-LIO-SAM IA_LIO_SLAM is created for data acquisition in unstructured environment and it is a framework for Intensity and Ambient Enhanced Lidar Inertial Odometry via Smoothing and Mapping that achieves highly accurate robot trajectories and mapping https://github.com/minwoo0611/IA_LIO_SAM ✓ Lidar
IMU
GPS
ROS1 GTSAM
ISCLOAM ISCLOAM presents a robust loop closure detection approach by integrating both geometry and intensity information https://github.com/wh200720041/iscloam ✓ Lidar ROS1 Ubuntu 18.04
ROS Melodic
Ceres
PCL
GTSAM
OpenCV
LeGO-LOAM-BOR LeGO-LOAM-BOR is improved version of the LeGO-LOAM by improving quality of the code, making it more readable and consistent. Also, performance is improved by converting processes to multi-threaded approach https://github.com/facontidavide/LeGO-LOAM-BOR ✓ Lidar
IMU
ROS1 ROS Melodic
PCL
GTSAM
LIO_SAM A framework that achieves highly accurate, real-time mobile robot trajectory estimation and map-building. It formulates lidar-inertial odometry atop a factor graph, allowing a multitude of relative and absolute measurements, including loop closures, to be incorporated from different sources as factors into the system https://github.com/TixiaoShan/LIO-SAM ✓ Lidar
IMU
GPS [Optional]
ROS1
ROS2
PCL
GTSAM
Optimized-SC-F-LOAM An improved version of F-LOAM and uses an adaptive threshold to further judge the loop closure detection results and reducing false loop closure detections. Also it uses feature point-based matching to calculate the constraints between a pair of loop closure frame point clouds and decreases time consumption of constructing loop frame constraints https://github.com/SlamCabbage/Optimized-SC-F-LOAM ✓ Lidar ROS1 PCL
GTSAM
Ceres
SC-A-LOAM A real-time LiDAR SLAM package that integrates A-LOAM and ScanContext. https://github.com/gisbi-kim/SC-A-LOAM ✓ Lidar ROS1 GTSAM >= 4.0
SC-LeGO-LOAM SC-LeGO-LOAM integrated LeGO-LOAM for lidar odometry and 2 different loop closure methods: ScanContext and Radius search based loop closure. While ScanContext is correcting large drifts, radius search based method is good for fine-stitching https://github.com/irapkaist/SC-LeGO-LOAM ✓ Lidar
IMU
ROS1 PCL
GTSAM