Skip to content

pointpainting_fusion#

Purpose#

The pointpainting_fusion is a package for utilizing the class information detected by a 2D object detection in 3D object detection.

Inner-workings / Algorithms#

The lidar points are projected onto the output of an image-only 2d object detection network and the class scores are appended to each point. The painted point cloud can then be fed to the centerpoint network.

pointpainting_fusion_image

Inputs / Outputs#

Input#

Name Type Description
input sensor_msgs::msg::PointCloud2 pointcloud
input/camera_info[0-7] sensor_msgs::msg::CameraInfo camera information to project 3d points onto image planes
input/rois[0-7] tier4_perception_msgs::msg::DetectedObjectsWithFeature ROIs from each image
input/image_raw[0-7] sensor_msgs::msg::Image images for visualization

Output#

Name Type Description
output sensor_msgs::msg::PointCloud2 painted pointcloud
~/output/objects autoware_auto_perception_msgs::msg::DetectedObjects detected objects
~/debug/image_raw[0-7] sensor_msgs::msg::Image images for visualization

Parameters#

Core Parameters#

Name Type Default Value Description
score_threshold float 0.4 detected objects with score less than threshold are ignored
densification_world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_num_past_frames int 0 the number of past frames to fuse with the current frame
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file

Assumptions / Known limits#

  • The multi-frame painting is not implemented yet.

(Optional) Error detection and handling#

(Optional) Performance characterization#

[1] Vora, Sourabh, et al. "PointPainting: Sequential fusion for 3d object detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[2] CVPR'20 Workshop on Scalability in Autonomous Driving] Waymo Open Dataset Challenge: https://youtu.be/9g9GsI33ol8?t=535 Ding, Zhuangzhuang, et al. "1st Place Solution for Waymo Open Dataset Challenge--3D Detection and Domain Adaptation." arXiv preprint arXiv:2006.15505 (2020).

(Optional) Future extensions / Unimplemented parts#