autoware_lanelet2_utils#
Nomenclature#
This package aims to strictly define the meaning of several words to clarify the documentation and API's scope. In the table below, codespace words are given specific meanings when used in the API and API description. italic words are emphasized to indicate that it refers to social common sense which often comes with ambiguity. To help disambiguate the meaning, illustration is provided. "Lanelet" refers to the entity of alanelet::ConstLanelet object in order to distinguish with the word "lane" used in social customs. A and B stands for some Lanelets objects.
| Word | Meaning | Illustration |
|---|---|---|
driving |
The vehicle position belongs to the designated Lanelet. | In each map, green Lanelet are the driving lanes of the vehicle.Open |
boundary,entry,exit |
The boundary of a Lanelet refers to the left or right Linestring. |
Open |
adjacent |
If A is adjacent to B, A and B share a common boundary with same direction either on the left or right side. |
In each map, orange Lanelet is adjacent to green Lanelet.Open |
same_direction |
Lanelet A and Lanelet B are same_direction if A and B are directly or indirectly adjacent to each other. |
In each map, orange Lanelets are same_direction as green Lanelet.Open |
bundle |
A bundle refers to a transitive closure set of Lanelets which are same_direction to each other. |
The enclosed sets of Lanelets are bundles.Open |
opposite |
If A is opposite to B, A and B share a common boundary with opposite direction. |
In the first map, green Lanelet and orange Lanelet are opposite to each other.In the second map, two red Lanelets are not opposite relation because they do not share a common LineString.Open |
opposite_direction |
If A and B are opposite_direction, the bundle of A and B are directly opposite to each other. |
In the each map, green Lanelet and orange Lanelet are opposite_direction because their bundles(enclosed in dotted line) are opposite relation.Open |
connected |
A is connected to(from) B if and only if the exit(entry) of A is identical to the entry(exit) of B. |
A is connected to B, and B is connected from A. Open |
following |
The following Lanelets of A is the list of Lanelets to which A is connected. |
In each map, orange Lanelets are the following of green Lanelet.Open |
previous |
The previous Lanelets of A is the list of Lanelets from which A is connected. |
In each map, orange Lanelets are the previous of green Lanelet. Open |
conflicting |
A is conflicting with B if A and B are geometrically intersecting. |
|
merging |
A is said to be merging Lanelet of B if and only if A is conflicting with B and both A and B are connected to a common Lanelet. |
In each map, one of the orange Lanelet is a merging Lanelet of the other orange Lanelet.Open |
sibling |
The designated Lanelets are referred to as sibling if all of them are connected from a common Lanelet. |
In each map, orange Lanelets are siblings.Open |
oncoming |
TBD | TBD |
upcoming |
TBD | TBD |
sequence |
sequence is a list of Lanelets whose each element is connected from or adjacent to the previous element. |
Open |
current_route_lanelet |
current_route_lanelet is one of the lanelet within the route which serves as the reference for ego position. |
API description#
<autoware/lanelet2_utils/geometry.hpp>#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
extrapolate_point |
Linearly extrapolate a point (ConstPoint3d) beyond a segment defined by two points (first and second) with given distance. |
Open |
|
interpolate_point |
Linearly interpolates a point along a segment defined by two points. | Open |
|
interpolate_lanelet |
Find an interpolated point from a lanelet centerline at a given distance. | Open |
|
interpolate_lanelet_sequence |
Find the first interpolated point from a centerline of the lanelet sequence at a given distance. | Open |
|
concatenate_center_line |
Concatenate all center line of input lanelet sequence (several ConstLanelets) |
Open |
|
get_linestring_from_arc_length |
Extract a sub-linestring between two arc-length positions along an input linestring. | Open |
|
get_pose_from_2d_arc_length |
Compute the 2D pose (position and heading) at a given arc-length along a sequence of lanelets. | Open |
|
get_closest_segment |
Find the closest segment of the ConstLineString3d to the search point (BasicPoint3d). |
Open |
|
get_lanelet_angle |
Find the angle of center line segment of the lanelet that is closest to search point (BasicPoint3d). The angle is defined with the x-axis as the reference (0 radians). Positive angles are measured counterclockwise, while negative angles are measured clockwise within range of −π to π radians. |
Open |
Example Usage of geometry#
Extrapolate point for distance of 5.
lanelet::ConstPoint3d p1(1, 0.0, 0.0, 0.0);
lanelet::ConstPoint3d p2(2, 10.0, 0.0, 0.0);
double distance = 5.0;
auto extrapolated_point = lanelet2_utils::extrapolate_point(p1, p2, distance);
Interpolate point at half of the segment.
lanelet::ConstPoint3d p1(1, 1.0, 2.0, 3.0);
lanelet::ConstPoint3d p2(2, 4.0, 5.0, 6.0);
double half_of_segment_length = std::hypot(4.0 - 1.0, 5.0 - 2.0, 6.0 - 3.0) / 2;
auto opt = lanelet2_utils::interpolate_point(p1, p2, half_of_segment_length);
auto interpolated_pt = *opt;
Interpolate lanelet at distance of 3.
const auto ll = lanelet_map_ptr_->laneletLayer.get(2287);
auto opt_pt = lanelet2_utils::interpolate_lanelet(ll, 3.0);
auto interpolated_pt = *opt_pt;
Interpolate lanelet sequence at distance of 3.
lanelet::ConstLanelets lanelets;
lanelets.reserve(3);
for (const auto & id : {2287, 2288, 2289}) {
lanelets.push_back(lanelet_map_ptr_->laneletLayer.get(id));
}
auto opt_pt = lanelet2_utils::interpolate_lanelet_sequence(lanelets, 3.0);
auto interpolated_pt = *opt_pt;
Concatenate several lanelet centerline.
lanelet::ConstLanelets lanelets;
lanelets.reserve(3);
for (auto id : {2287, 2288, 2289}) {
lanelets.push_back(lanelet_map_ptr_->laneletLayer.get(id));
}
auto opt_ls = lanelet2_utils::concatenate_center_line(lanelets);
const auto & ls = *opt_ls;
Get linestring from arc-length range (of 0.5 to 1.5).
std::vector<lanelet::Point3d> pts = {
lanelet::Point3d{lanelet::ConstPoint3d(1, 0.0, 0.0, 0.0)},
lanelet::Point3d{lanelet::ConstPoint3d(1, 1.0, 0.0, 0.0)},
lanelet::Point3d{lanelet::ConstPoint3d(1, 1.7, 0.0, 0.0)},
lanelet::Point3d{lanelet::ConstPoint3d(1, 2.0, 0.0, 0.0)}};
lanelet::ConstLineString3d line{lanelet::InvalId, pts};
auto opt =
autoware::experimental::lanelet2_utils::get_linestring_from_arc_length(line, 0.5, 1.5);
const auto & out = *opt;
Get pose from arc-length (of 3.0).
lanelet::ConstLanelets lanelets;
for (auto id : {2287, 2288, 2289}) {
lanelets.push_back(lanelet_map_ptr_->laneletLayer.get(id));
}
auto opt_pose =
autoware::experimental::lanelet2_utils::get_pose_from_2d_arc_length(lanelets, 3.0);
const auto & p = *opt_pose;
Get closest segment from the ConstLineString3d.
void closest_segment()
{
std::vector<lanelet::Point3d> pts = {
lanelet::Point3d{lanelet::ConstPoint3d(1, 0.0, 0.0, 0.0)},
lanelet::Point3d{lanelet::ConstPoint3d(1, 1.0, 0.0, 0.0)},
lanelet::Point3d{lanelet::ConstPoint3d(1, 2.0, 0.0, 0.0)}};
lanelet::ConstLineString3d line{lanelet::InvalId, pts};
Get lanelet angle from the lanelet centerline.
const auto ll = lanelet_map_ptr_->laneletLayer.get(2258);
lanelet::BasicPoint3d p(106.71, 149.3, 100);
auto out = autoware::experimental::lanelet2_utils::get_lanelet_angle(ll, p);
Get closest center pose from ConstLanelet.
auto p1 = lanelet::BasicPoint3d(0.0, 0.0, 0.0);
auto p2 = lanelet::BasicPoint3d(0.0, 3.0, 0.0);
auto p3 = lanelet::BasicPoint3d(2.0, 0.0, 0.0);
auto p4 = lanelet::BasicPoint3d(2.0, 3.0, 0.0);
std::vector<lanelet::BasicPoint3d> left_points = {p1, p2};
std::vector<lanelet::BasicPoint3d> right_points = {p3, p4};
auto ll = create_safe_lanelet(left_points, right_points);
auto search_pt = lanelet::BasicPoint3d(1.2, 1.0, 0.0);
auto p = autoware::experimental::lanelet2_utils::get_closest_center_pose(*ll, search_pt);
<autoware/lanelet2_utils/conversion.hpp>#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
load_mgrs_coordinate_map(path, centerline_resolution) |
Instantiate a LaneletMap object from given path to .osm file. Also it sets more dense centerline(at the interval of centerline_resolution) than default Lanelet2 library, to help improve Planning accuracy. |
||
instantiate_routing_graph_and_traffic_rules |
This function creates a RoutingGraph and TrafficRules object only from "road" lanes for Vehicle participant, which means "road_shoulder","bicycle_lane", "crosswalk", etc. Lanelets are inaccessible from left/right adjacency. |
||
|
Convert LaneletMap object from/to autoware_mapping_msgs::LaneletMapBin message |
||
|
Convert lanelet point (lanelet::BasicPoint3d or lanelet::ConstPoint3d) from/to geometry_msgs::msg::Point or geometry_msgs::msg::Pose |
||
create_safe_linestring |
Construct LineString from vector of lanelet points (BasicLineString3d - BasicPoint3d and ConstLineString3d - ConstPoint3d) |
||
create_safe_lanelet |
Construct ConstLanelet from two vectors of lanelet points (left and right) - BasicPoint3d or ConstPoint3d |
Example Usage of conversion#
Load coordinate map.
// setup path
const auto sample_map_dir =
fs::path(ament_index_cpp::get_package_share_directory("autoware_lanelet2_utils")) /
"sample_map";
const auto intersection_crossing_map_path = sample_map_dir / "vm_03/left_hand/lanelet2_map.osm";
// load map
lanelet::LaneletMapConstPtr lanelet_map_ptr_ =
lanelet2_utils::load_mgrs_coordinate_map(intersection_crossing_map_path.string(), 5.0);
Load routing graph and traffic rules.
// load routing graph and traffic rules
lanelet::routing::RoutingGraphConstPtr routing_graph_{nullptr};
lanelet::traffic_rules::TrafficRulesPtr traffic_rules_{nullptr};
std::tie(routing_graph_, traffic_rules_) =
lanelet2_utils::instantiate_routing_graph_and_traffic_rules(lanelet_map_ptr_);
// Or get only routing graph or traffic rules
routing_graph_ =
lanelet2_utils::instantiate_routing_graph_and_traffic_rules(lanelet_map_ptr_).first;
traffic_rules_ =
lanelet2_utils::instantiate_routing_graph_and_traffic_rules(lanelet_map_ptr_).second;
Conversion between LaneletMapBin and LaneletMapConstPtr.
// convert to LaneletMapBin
autoware_map_msgs::msg::LaneletMapBin map_msg_ =
lanelet2_utils::to_autoware_map_msgs(lanelet_map_ptr_);
std::cout << "Convert LaneletMapConstPtr to LaneletMapBin!" << std::endl;
// convert to LaneletMapConstPtr
lanelet::LaneletMapConstPtr lanelet_map_ptr_converted =
lanelet2_utils::from_autoware_map_msgs(map_msg_);
std::cout << "Convert LaneletMapBin to LaneletMapConstPtr !" << std::endl;
Message conversion from BasicPoint3d to Point.
auto basicpoint3d = lanelet::BasicPoint3d(1.0, 2.0, 3.0);
auto point_from_basicpoint3d = lanelet2_utils::to_ros(basicpoint3d);
Message conversion between ConstPoint3d and Point.
auto constpoint3d = lanelet::ConstPoint3d(lanelet::Point3d(lanelet::InvalId, 1.0, 2.0, 3.0));
auto point_from_constpoint3d = lanelet2_utils::to_ros(constpoint3d);
std::cout << "Convert from lanelet::ConstPoint3d to geometry_msgs::msg::Point." << std::endl;
auto converted_constpoint3d_from_point = lanelet2_utils::from_ros(point_from_constpoint3d);
std::cout << "Convert from geometry_msgs::msg::Point to lanelet::ConstPoint3d." << std::endl;
Message conversion from Pose to ConstPoint3d.
geometry_msgs::msg::Pose pose;
pose.position.x = 1.0;
pose.position.y = 2.0;
pose.position.z = 3.0;
auto const_pt = lanelet2_utils::from_ros(pose);
std::cout << "Convert from geometry_msgs::msg::Pose to lanelet::ConstPoint3d." << std::endl;
Message conversion from BasicPoint2d to Point.
auto basicpoint2d = lanelet::BasicPoint2d(1.0, 2.0);
auto point_from_basicpoint2d = lanelet2_utils::to_ros(basicpoint2d, 3.0);
std::cout << "Convert from lanelet::BasicPoint2d to geometry_msgs::msg::Point." << std::endl;
Message conversion from ConstPoint2d to Point.
auto constpoint2d = lanelet::ConstPoint2d(lanelet::Point2d(lanelet::InvalId, 1.0, 2.0));
auto point_from_constpoint2d = lanelet2_utils::to_ros(constpoint2d, 3.0);
std::cout << "Convert from lanelet::ConstPoint2d to geometry_msgs::msg::Point." << std::endl;
auto constpoint3d_from_point = lanelet2_utils::from_ros(point_from_constpoint2d);
std::cout << "Convert from geometry_msgs::msg::Point to lanelet::ConstPoint3d." << std::endl;
auto constpoint2d_from_point = lanelet::utils::to2D(constpoint3d_from_point);
std::cout << "Convert from lanelet::ConstPoint3d to lanelet::ConstPoint2d." << std::endl;
<autoware/lanelet2_utils/kind.hpp>#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
is_road_lane |
This function returns true if the input Lanelet is road subtype. |
\(O(1)\) | |
is_shoulder_lane |
This function returns true if the input Lanelet is road_shoulder subtype. |
\(O(1)\) | |
is_bicycle_lane |
This function returns true if the input Lanelet is bicycle_lane subtype. |
\(O(1)\) |
Example Usage of kind#
Check type of lanelet.
auto lanelet_map_ptr_ = set_up_lanelet_map_ptr();
const auto ll = lanelet_map_ptr_->laneletLayer.get(46);
bool check_road_lane = autoware::experimental::lanelet2_utils::is_road_lane(ll);
bool check_shoulder_lane = autoware::experimental::lanelet2_utils::is_shoulder_lane(ll);
bool check_bicycle_lane = autoware::experimental::lanelet2_utils::is_bicycle_lane(ll);
if (check_road_lane) {
std::cout << "This lanelet is road lane." << std::endl;
} else {
std::cout << "This lanelet is NOT road lane." << std::endl;
}
if (check_shoulder_lane) {
std::cout << "This lanelet is shoulder lane." << std::endl;
} else {
std::cout << "This lanelet is NOT shoulder lane." << std::endl;
}
if (check_bicycle_lane) {
std::cout << "This lanelet is bicycle lane." << std::endl;
} else {
std::cout << "This lanelet is NOT bicycle lane." << std::endl;
}
<autoware/lanelet2_utils/hatched_road_markings.hpp>#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
get_adjacent_hatched_road_markings |
Returns polygons with type hatched_road_markings that touch the left/right bounds of the given lanelet sequence. Polygons are grouped by side and duplicates removed. |
\(O(V)\) where \(V\) is the number of boundary vertices inspected |
Example Usage of hatched_road_markings#
const auto adjacent = autoware::experimental::lanelet2_utils::get_adjacent_hatched_road_markings(
lanelets, lanelet_map_ptr_);
// Collect unique polygon IDs from the result.
std::unordered_set<lanelet::Id> left_ids;
std::unordered_set<lanelet::Id> right_ids;
for (const auto & poly : adjacent.left) {
left_ids.insert(poly.id());
}
for (const auto & poly : adjacent.right) {
right_ids.insert(poly.id());
}
std::cout << "Left ID size is: " << left_ids.size() << std::endl;
std::cout << "Left ID is: " << std::endl;
for (const auto & left : left_ids) {
std::cout << left << std::endl;
}
std::cout << "Right ID size is: " << right_ids.size() << std::endl;
std::cout << "Right ID is: " << std::endl;
for (const auto & right : right_ids) {
std::cout << right << std::endl;
}
<autoware/lanelet2_utils/topology.hpp>#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
left_opposite_lanelet |
same as below right_opposite_lanelet |
\(O(1)\) see findUsage for detail |
|
right_opposite_lanelet |
This functions returns the right opposite Lanelet of the input Lanelet if available, otherwise returns null. |
\(O(1)\) see findUsage for detail |
In the first and second map, the green Lanelet is the right_opposite_lanelet of the orange Lanelet.In the third map, the right_opposite_lanelet of the orange Lanelet is null.Open |
following_lanelets |
This function returns the following Lanelets of the input Lanelet. The order is not defined. |
\(O(E)\) where \(E\) is the number of Lanelets to which the input is connected to. | |
previous_lanelets |
This function returns the previous Lanelets of the input Lanelet. The order is not defined. |
\(O(E)\) where \(E\) is the number of Lanelets from which the input is connected from. | |
sibling_lanelets |
This function returns the sibling Lanelets of the input Lanelet excluding itself. The order is not defined. |
\(O(E)\) where \(E\) is the number of sibling Lanelets | |
from_ids |
This function returns Lanelet objects in the same order as the input IDs. | \(O(n)\) | |
get_conflicting_lanelets |
This function returns the conflicting Lanelets of the input Lanelet. The order is not defined. |
\(O(E)\) where \(E\) is the number of conflicting Lanelets |
Example Usage of topology#
Get left opposite lanelet.
const auto opt = lanelet2_utils::left_opposite_lanelet(
lanelet_map_ptr_->laneletLayer.get(2311), lanelet_map_ptr_);
const auto lane = *opt;
std::cout << "The left opposite lanelet id is : " << lane.id() << std::endl;
Get right opposite lanelet.
const auto opt = lanelet2_utils::right_opposite_lanelet(
lanelet_map_ptr_->laneletLayer.get(2288), lanelet_map_ptr_);
const auto lane = *opt;
std::cout << "The right opposite lanelet id is : " << lane.id() << std::endl;
Get following lanelets.
const auto following = lanelet2_utils::following_lanelets(
lanelet_map_ptr_->laneletLayer.get(2244), routing_graph_ptr_);
std::cout << "The following lanelets id are :" << std::endl;
for (const auto & ll : following) {
std::cout << ll.id() << std::endl;
}
Get previous lanelets.
const auto previous = lanelet2_utils::previous_lanelets(
lanelet_map_ptr_->laneletLayer.get(2249), routing_graph_ptr_);
std::cout << "The previous lanelets id are :" << std::endl;
for (const auto & ll : previous) {
std::cout << ll.id() << std::endl;
}
Get sibling lanelets.
const auto siblings = lanelet2_utils::sibling_lanelets(
lanelet_map_ptr_->laneletLayer.get(2273), routing_graph_ptr_);
std::cout << "The sibling lanelets id are :" << std::endl;
for (const auto & ll : siblings) {
std::cout << ll.id() << std::endl;
}
Get conflicting lanelets.
const auto conflicting_lanelets = lanelet2_utils::get_conflicting_lanelets(
lanelet_map_ptr_->laneletLayer.get(2270), routing_graph_ptr_);
std::cout << "The conflicting lanelets id are :" << std::endl;
for (const auto & ll : conflicting_lanelets) {
std::cout << ll.id() << std::endl;
}
Get ConstLanelets from ids.
const auto lanelets =
lanelet2_utils::from_ids(lanelet_map_ptr_, std::vector<lanelet::Id>({2296, 2286, 2270}));
std::cout << "Get ConstLanelets of size: " << lanelets.size() << std::endl;
<autoware/lanelet2_utils/intersection.hpp>#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
is_intersection_lanelet |
This function returns true if and only if the input Lanelet has turn_direction attribute. |
\(O(1)\) | |
|
This function returns true if and only if the input Lanelet has turn_direction attribute and its value is straight/left/right. |
\(O(1)\) | |
get_turn_direction |
This function returns the turn direction (straight/left/right) at the intersection if and only if the input Lanelet has turn_direction attribute. |
\(O(1)\) |
Example Usage of intersection#
Check if the lanelet is intersection.
bool check = lanelet2_utils::is_intersection_lanelet(lanelet_map_ptr_->laneletLayer.get(2274));
std::cout << (check ? "This lanelet is intersection!" : "This lanelet is not intersection.")
<< std::endl;
Check if the lanelet is straight direction.
bool check = lanelet2_utils::is_straight_direction(lanelet_map_ptr_->laneletLayer.get(2278));
std::cout << (check ? "This lanelet is straight direction!"
: "This lanelet is not straight direction.")
Check if the lanelet is left direction.
{
bool check = lanelet2_utils::is_left_direction(lanelet_map_ptr_->laneletLayer.get(2274));
std::cout << (check ? "This lanelet is left direction!" : "This lanelet is not left direction.")
Check if the lanelet is right direction.
{
bool check = lanelet2_utils::is_right_direction(lanelet_map_ptr_->laneletLayer.get(2277));
std::cout << (check ? "This lanelet is right direction!"
: "This lanelet is not right direction.")
Get Turn direction at the intersection.
{
// not intersection
auto opt = lanelet2_utils::get_turn_direction(lanelet_map_ptr_->laneletLayer.get(2257));
bool check = opt.has_value();
std::cout << (check ? "This lanelet has turn_direction attribute!"
: "This lanelet has no turn_direction attribute.")
<< std::endl;
}
// straight
{
const auto opt = lanelet2_utils::get_turn_direction(lanelet_map_ptr_->laneletLayer.get(2278));
if (opt.has_value()) {
auto direction = *opt;
std::cout << "Straight: " << direction << std::endl;
}
}
// left
{
const auto opt = lanelet2_utils::get_turn_direction(lanelet_map_ptr_->laneletLayer.get(2274));
if (opt.has_value()) {
auto direction = *opt;
std::cout << "Left: " << direction << std::endl;
}
}
// right
{
const auto opt = lanelet2_utils::get_turn_direction(lanelet_map_ptr_->laneletLayer.get(2277));
if (opt.has_value()) {
auto direction = *opt;
std::cout << "Right: " << direction << std::endl;
}
}
<autoware/lanelet2_utils/lane_sequence.hpp#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
class LaneSequence |
This class internally holds lanelet::ConstLanelets such that they are consecutive on the routing graph. |
||
| class invariance | .as_lanelets() return Lanelets that are consecutive on the routing graph |
||
create(lanelets, routing_graph) |
Return an optional of LaneSequence class that satisfies the invariance |
||
.as_lanelets() |
Return the underlying lanelet::ConstLanelets |
Example Usage of lane_sequence#
Create LaneSequence using constructor.
auto lane2 = lanelet_map_ptr_->laneletLayer.get(2261); // lane2 -> lane_other is not connected
auto lane_other = lanelet_map_ptr_->laneletLayer.get(2312);
{
const auto seq = lanelet2_utils::LaneSequence(lane1);
std::cout << "LaneSequence size is: " << seq.as_lanelets().size() << std::endl;
}
{
Create LaneSequence using create.
const auto opt =
lanelet2_utils::LaneSequence::create({lane1, lane2, lane_other}, routing_graph_ptr_);
std::cout << (opt.has_value()
? "opt has value"
: "opt doesn't have value because lane_other is not connecting to lane2")
<< std::endl;
}
{
const auto opt = lanelet2_utils::LaneSequence::create({lane1, lane2}, routing_graph_ptr_);
const auto seq = *opt;
std::cout << "Created LaneSequence size is: " << seq.as_lanelets().size() << std::endl;
}
}
<autoware/lanelet2_utils/nn_search.hpp>#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
get_closest_lanelet(lanelets, pose) |
This function retrieves the lanelet which gives the smallest distance to given pose(if it is within a lanelet, it gives zero distance) and whose centerline is closest to the given orientation among them |
\(O(N)\) where \(N\) is the number of input laneletsLaneletRTree is much more efficient |
|
get_closest_lanelet_within_constraint(lanelets, pose, dist_thresh, yaw_thresh) |
In addition to get_closest_lanelet, it filters lanelets whose distance to pose is \(\leq\) dist_thresh and yaw angle difference is \(\leq\) yaw_thresh |
\(O(N)\) where \(N\) is the number of input laneletsLaneletRTree is much more efficient |
|
get_road_lanelets_at(lanelet_map, x, y) |
Retrieve all "road" Lanelets at given position | R-tree | |
get_shoulder_lanelets_at(lanelet_map, x, y) |
Retrieve all "road_shoulder" Lanelets at given position | R-tree | |
class LaneletRTree |
class LaneletRTree constructs R-tree structure from given Lanelets and provides more efficient operations. |
||
.get_closest_lanelet(pose) |
Efficient version of get_closest_lanelet |
R-tree | |
.get_closest_lanelet_within_constraint(pose, dist_thresh, yaw_thresh) |
Efficient version of get_closest_lanelet_within_constraint |
R-tree |
Example Usage of nn_search#
Create R-tree
lanelet::ConstLanelets all_lanelets_ = lanelet_map_ptr_->laneletLayer | ranges::to<std::vector>();
std::optional<autoware::experimental::lanelet2_utils::LaneletRTree> rtree_{all_lanelets_};
Get the closest lanelet without constraint (in both use and not use R-tree)
// get_closest_lanelet (without rtree)
{
auto opt = lanelet2_utils::get_closest_lanelet(all_lanelets_, P0);
auto closest = *opt;
std::cout << "Closest Lanelet id is: " << closest.id() << std::endl;
}
// get_closest_lanelet (using rtree)
{
auto opt = rtree_->get_closest_lanelet(P0);
auto closest = *opt;
std::cout << "Closest Lanelet id is: " << closest.id() << std::endl;
}
Get the closest lanelet without constraint (in both use and not use R-tree)
static constexpr double ego_nearest_dist_threshold = 3.0;
static constexpr double ego_nearest_yaw_threshold = 1.046;
// get_closest_lanelet_within_constraint (without rtree)
{
auto opt = lanelet2_utils::get_closest_lanelet_within_constraint(
all_lanelets_, P0, ego_nearest_dist_threshold, ego_nearest_yaw_threshold);
auto closest = *opt;
std::cout << "Closest Lanelet id is: " << closest.id() << std::endl;
}
// get_closest_lanelet_within_constraint (using rtree)
{
auto opt = rtree_->get_closest_lanelet_within_constraint(
P0, ego_nearest_dist_threshold, ego_nearest_yaw_threshold);
auto closest = *opt;
std::cout << "Closest Lanelet id is: " << closest.id() << std::endl;
}
Get road lanelet from the LaneletMap
{
geometry_msgs::msg::Point p;
p.x = 137.53617965826874;
p.y = 189.8355248506006;
const auto road_lanelets = lanelet2_utils::get_road_lanelets_at(lanelet_map_ptr_, p.x, p.y);
std::cout << "There are " << road_lanelets.size() << " road lanelet(s) in this LaneletMap."
<< std::endl;
}
Get shoulder lanelet from the LaneletMap
geometry_msgs::msg::Point p;
p.x = 101.11975409926032;
p.y = 143.75759863307977;
const auto shoulder_lanelets =
lanelet2_utils::get_shoulder_lanelets_at(lanelet_map_ptr_, p.x, p.y);
std::cout << "There are " << shoulder_lanelets.size()
<< " shoulder lanelet(s) in this LaneletMap." << std::endl;
<autoware/lanelet2_utils/map_handler.hpp>#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
class MapHandler |
class MapHandler provides convenient functions related to adjacency, VRU lanes, etc. for Planning. |
||
| class invariance |
|
||
MapHandler::create(...) |
A factory function to construct under invariance | ||
|
Getter functions | ||
.left_lanelet(lanelet, take_sibling, extra_vru) |
This function ignores the permission of lane change. If extra_vru is:
|
\(O(1)\) | In the first map, the green Lanelet is the left_lanelet of the orange Lanelet.In the second and third map, the left_lanelet of the orange Lanelet is null.Open |
.right_lanelet(lanelet, take_sibling, extra_vru) |
same as above .left_lanelet() |
\(O(1)\) | |
.leftmost_lanelet(lanelet, take_sibling, extra_vru) |
This function recursively searches .left_lanelet() of input lanelet. |
\(O(W)\) where \(W\) is the size of the bundle. |
In the first and second map, the green Lanelet is the leftmost_lanelet of the orange Lanelet.In the third map, the leftmost_lanelet of the orange Lanelet is null.Open |
.rightmost_lanelet(lanelet, take_sibling, extra_vru) |
This function recursively searches .right_lanelet() of input lanelet. |
\(O(W)\) where \(W\) is the size of the bundle. |
In the first map, the green Lanelet is the rightmost_lanelet of the orange Lanelet.In the second and third map, the rightmost_lanelet of the orange Lanelet is null.Open |
.left_lanelets(lanelet, include_opposite) |
The input Lanelet is not included in the output, and output is ordered from left to right. | \(O(W)\) where \(W\) is the size of the bundle. |
In the first map, the green Lanelets are the left_lanelets of the orange Lanelet.In the second and third map, left_lanelets of the orange Lanelet is empty.If the flag include_opposite = true, the left opposite Lanelet and all of its same_direction Lanelets area also retrieved as illustrated in the fourth and fifth maps.Open |
.right_lanelets(lanelet, include_opposite) |
The input Lanelet is not included in the output, and output is ordered from right to left. | \(O(W)\) where \(W\) is the size of the bundle. |
In the first map, the green Lanelets are the right_lanelets of the orange Lanelet.In the second and third map, right_lanelets of the orange Lanelet is empty.If the flag include_opposite = true, the right opposite Lanelet and all of its same_direction Lanelets area also retrieved as illustrated in the fourth and fifth maps.Open |
.get_shoulder_lanelet_sequence(lanelet, forward, backward) |
This function computes (1) "road_shoulder" Lanelets behind of lanelet by up to backward and (2) "road_shoulder" Lanelets after lanelet by up to forward as a list |
\(O(\textrm{total length})\) | |
|
Retrieve each VRU Lanelet of lanelet if it exists |
Example Usage of map_handler#
Create map_handler.
const lanelet::LaneletMapConstPtr lanelet_map_ptr_ =
autoware::experimental::lanelet2_utils::load_mgrs_coordinate_map(
intersection_crossing_map_path.string());
// convert to laneletMapBin
auto map_msg_ = lanelet2_utils::to_autoware_map_msgs(lanelet_map_ptr_);
std::optional<lanelet2_utils::MapHandler> map_handler_opt_;
map_handler_opt_.emplace(lanelet2_utils::MapHandler::create(map_msg_).value());
Try using left_lanelet with different extra_vru.
{
const auto opt = map_handler.left_lanelet(
lanelet_map_ptr->laneletLayer.get(2257), false, lanelet2_utils::ExtraVRU::RoadOnly);
std::cout << (opt.has_value() ? "There is left lane with Road Only"
: "There is no left lane with Road Only")
<< std::endl;
}
{
const auto lane = map_handler.left_lanelet(
lanelet_map_ptr->laneletLayer.get(2257), false, lanelet2_utils::ExtraVRU::Shoulder);
std::cout << "Shoulder lane id is " << (*lane).id() << std::endl;
}
{
const auto opt = map_handler.left_lanelet(
lanelet_map_ptr->laneletLayer.get(2257), false, lanelet2_utils::ExtraVRU::BicycleLane);
std::cout << (opt.has_value() ? "There is left lane that is Bicycle Lane"
: "There is no left lane that is Bicycle Lane")
<< std::endl;
}
{
const auto opt = map_handler.left_lanelet(
lanelet_map_ptr->laneletLayer.get(2257), false,
lanelet2_utils::ExtraVRU::ShoulderAndBicycleLane);
std::cout << (opt.has_value() ? "There is left lane that is Shoulder and Bicycle Lane"
: "There is no left lane that is Shoulder and Bicycle Lane")
<< std::endl;
auto lane = *opt;
std::cout << "Shoulder and Bicycle lane id is " << lane.id() << std::endl;
}
Call right_lanelet.
const auto opt = map_handler.right_lanelet(
lanelet_map_ptr->laneletLayer.get(2245), false, lanelet2_utils::ExtraVRU::RoadOnly);
auto lane = *opt;
std::cout << "Right Road only lane id is " << lane.id() << std::endl;
Call leftmost_lanelet.
const auto opt = map_handler.leftmost_lanelet(
lanelet_map_ptr->laneletLayer.get(2288), false, lanelet2_utils::ExtraVRU::RoadOnly);
auto lane = *opt;
std::cout << "Leftmost Road only lane id is " << lane.id() << std::endl;
Call rightmost_lanelet.
const auto opt = map_handler.rightmost_lanelet(
lanelet_map_ptr->laneletLayer.get(2286), false, lanelet2_utils::ExtraVRU::RoadOnly);
auto lane = *opt;
std::cout << "Rightmost Road only lane id is " << lane.id() << std::endl;
Call left_lanelets.
const auto lefts = map_handler.left_lanelets(lanelet_map_ptr->laneletLayer.get(2288));
std::cout << "Left lanelets size is " << lefts.size() << std::endl;
std::cout << "That has id" << std::endl;
for (size_t i = 0ul; i < lefts.size(); ++i) {
std::cout << lefts[i].id() << std::endl;
}
Call right_lanelets including opposite lanelets.
const auto rights = map_handler.right_lanelets(lanelet_map_ptr->laneletLayer.get(2286), true);
std::cout << "Right lanelets size is " << rights.size() << std::endl;
std::cout << "That has id" << std::endl;
for (size_t i = 0ul; i < rights.size(); ++i) {
std::cout << rights[i].id() << std::endl;
}
Call get_shoulder_lanelet_sequence.
const auto seq =
map_handler002.get_shoulder_lanelet_sequence(lanelet_map_ptr002->laneletLayer.get(48));
std::cout << "lanelet sequence size is " << seq.size() << std::endl;
std::cout << "That has id" << std::endl;
for (size_t i = 0ul; i < seq.size(); ++i) {
std::cout << seq.at(i).id() << std::endl;
}
<autoware/lanelet2_utils/route_manager.hpp>#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
class RouteManager EXTENDS MapHandler |
class RouteManager is responsible for properly tracking current_route_lanelet along the given route information, considering swerving maneuver and lane change. Also it provides several functions related to current_route_lanelet |
||
| class invariance |
|
||
RouteManager::create(...) |
A factory function to construct under invariance | ||
Inherits MapHandler's member functions |
|||
.update_current_pose(new_pose) |
This function updates current_route_lanelet on the route based on new_pose. This method should be used for all the cases excluding lane change completion, and current_route_lanelet is updated longitudinally. It is expected to be called in every cycle of planning. |
\(O(1)\) | Even if ego vehicle is in the middle swerving, update_current_pose decides next current_route_lanelet longitudinally, as illustrated in thin violet in the figure.Open |
.commit_lane_change(new_pose) |
This function updates current_route_lanelet on the route considering lane change. |
R-tree | Only when lane change has been completed, commit_lane_change() is expected to be called, as illustrated in the the last item of "(2) Lane Change Scenario".Open |
.current_lanelet() |
Get current_route_lanelet Lanelet |
\(O(1)\) | |
.get_lanelet_sequence_on_route(forward, backward) |
This function computes (1) Lanelets behind of current_route_lanelet by up to backward and (2) Lanelets after current_route_lanelet by up to forward as a list, only on the route without lane change. The length is measured from current_pose with respect to current_route_lanelet. |
\(O(\textrm{total length})\) | From current_route_lanelet, the output contains the Lanelets by up to given distance in backward/forward direction. The output does not contain non-route Lanelets even if the sequence is below specified length, as illustrated in "(1)" in below figure.Open |
.get_lanelet_sequence_on_outward_route(forward, backward) |
This function computes (1) Lanelets behind of current_route_lanelet by up to backward and (2) Lanelets after current_route_lanelet by up to forward as a list, extending to non-route Lanelet if necessary, without lane change. The length is measured from current_pose with respect to current_route_lanelet. |
\(O(\textrm{total length})\) | From current_route_lanelet, the output contains the Lanelets by up to given distance in backward/forward direction. The output extends to non-route Lanelets if the route part of the sequence is below specified length, as illustrated in "(2)" in below figure.Open |
.get_closest_preferred_route_lanelet(...) |
preferred route lanelet limited version of get_closest_lanelet_within_constraint |
R-tree | |
.get_closest_route_lanelet_within_constraints(...) |
route lanelet limited version of get_closest_lanelet_within_constraint |
R-tree |
Example Usage of route_manager#
Create route_manager.
static autoware_planning_msgs::msg::LaneletRoute create_route_msg(
const std::vector<std::pair<std::vector<lanelet::Id>, lanelet::Id>> & route_ids)
{
using autoware_planning_msgs::msg::LaneletPrimitive;
using autoware_planning_msgs::msg::LaneletSegment;
autoware_planning_msgs::msg::LaneletRoute route_msg;
for (const auto & route_id : route_ids) {
const auto & [ids, preferred_id] = route_id;
LaneletSegment segment;
segment.preferred_primitive.id = preferred_id;
for (const auto & id : ids) {
auto primitive =
autoware_planning_msgs::build<LaneletPrimitive>().id(id).primitive_type("road");
segment.primitives.push_back(primitive);
}
route_msg.segments.push_back(segment);
}
return route_msg;
autoware_planning_msgs::msg::LaneletRoute route_msg_ = create_route_msg(
{{{2239, 2240, 2241, 2242}, 2240},
{{2301, 2302, 2300, 2299}, 2302},
{{2244, 2245, 2246, 2247}, 2245},
{{2265, 2261, 2262, 2263}, 2261}});
autoware_map_msgs::msg::LaneletMapBin map_msg_ = load_map_msg();
geometry_msgs::msg::Pose initial_pose_;
const auto route_manager_opt =
lanelet2_utils::RouteManager::create(map_msg_, route_msg_, initial_pose_);
std::cout << (route_manager_opt.has_value() ? "Route Manager created"
: "Route manager create failed.")
<< std::endl;
Update current pose.
route_manager_opt =
std::move(route_manager_opt.value())
.update_current_pose(P1, ego_nearest_dist_threshold, ego_nearest_yaw_threshold);
const auto & route_manager = route_manager_opt.value();
const auto & current_lanelet = route_manager.current_lanelet();
std::cout << "Current lanelet (moved) id is " << current_lanelet.id() << std::endl;
Commit success lane change.
route_manager_opt = std::move(route_manager_opt.value()).commit_lane_change_success(P5);
const auto & route_manager = route_manager_opt.value();
const auto & lane_changed_lanelet = route_manager.current_lanelet();
std::cout << "Current lanelet (lane changed) id is " << lane_changed_lanelet.id()
<< std::endl;
Get current_lanelet from route_manager.
const auto & route_manager = route_manager_opt.value();
const auto initial_lanelet = route_manager.current_lanelet();
std::cout << "Current lanelet (initial) id is " << initial_lanelet.id() << std::endl;
// or directly get from opt
const auto initial_lanelet_from_opt = route_manager_opt->current_lanelet();
std::cout << "Current lanelet (initial) id from opt is " << initial_lanelet_from_opt.id()
<< std::endl;
Get lanelet sequence (on route and outward route)
{
const auto seq = route_manager.get_lanelet_sequence_on_route(0.0, 15.0);
std::cout << "Size of the lanelet sequence is " << seq.as_lanelets().size() << std::endl;
std::cout << "Including id " << std::endl;
for (auto i = 0ul; i < seq.as_lanelets().size(); ++i) {
std::cout << seq.as_lanelets().at(i).id() << std::endl;
}
}
{
const auto seq = route_manager.get_lanelet_sequence_outward_route(0.0, 15.0);
std::cout << "Size of the outward lanelet sequence is " << seq.as_lanelets().size()
<< std::endl;
std::cout << "Including id " << std::endl;
for (auto i = 0ul; i < seq.as_lanelets().size(); ++i) {
std::cout << seq.as_lanelets().at(i).id() << std::endl;
}
}
Get closest preferred route lanelet (with and without constraints)
{
const auto lane_opt = route_manager.get_closest_preferred_route_lanelet(initial_pose_);
auto lane = *lane_opt;
std::cout << "Closest preferred route lanelet id is " << lane.id() << std::endl;
}
{
static constexpr double ego_nearest_dist_threshold = 3.0;
static constexpr double ego_nearest_yaw_threshold = 1.046;
const auto lane_opt = route_manager.get_closest_route_lanelet_within_constraints(
initial_pose_, ego_nearest_dist_threshold, ego_nearest_yaw_threshold);
auto lane = *lane_opt;
std::cout << "Closest route lanelet (with constraint) id is " << lane.id() << std::endl;
}
Native R-tree API#
| Function | Description | Average Computational Complexity | Illustration |
|---|---|---|---|
.laneletLayer, .pointLayer, etc. have following member functions
|
Against the input point, this function approximately returns elements of given layer in the ascending order of distance by specified number n(reference). Note that they can return inaccurate distance. |
R-tree | |
|
This function approximately searches for the object within the specified area(reference) |
R-tree | |
findNearest(layer, point, n)(in <lanelet2_core/LaneletMap.h>) |
On the given primitive layer, this function approximately returns n closest elements to given point in the ascending order of distance(reference) |
R-tree | |
findWithin2d(layer, geometry, max_dist)(in <lanelet2_core/geometry/LaneletMap.h>) |
On the given primitive layer, this function returns the elements whose distance to given geometry is less than max_dist precisely |
R-tree |
Notes#
About Boost.Geometry R-tree#
This slide is useful for understanding Boost.Geometry R-tree features.
Tip
To handle large size HDMaps efficiently, it is highly recommended not to do \(O(N)\) search on primitive layers.
Info
- Creating the R-tree is expensive, so it is a good practice to initialize it once from a set of Lanelets
- For small number of geometries using a rtree can be more costly. Construction times may be higher than the gain in query performance
Warning
- For small number of geometries using a rtree can be more costly. Construction times may be higher than the gain in query performance
- Do not do queries on multiple geometries at once (e.g., multiple polygons)
- like
rtree.query(intersects(geometries)) - It is usually much faster to do the query for each individual geometries
for(const auto & geometry : geometries) rtree.query(intersects(geometry))
- like
Complexity of findUsage#
The readers should be noted that following description is implementation dependent.
Lanelet map primitives(like Lanelet, Area, RegulatoryElement) are stored in several PrimitiveLayer<T> objects according to their types as shown below.
class LaneletMap : public LaneletMapLayers {
public:
using LaneletMapLayers::LaneletMapLayers;
<...>
};
class LaneletMapLayers {
<...>
LaneletLayer laneletLayer; //!< access to the lanelets within this map
AreaLayer areaLayer; //!< access to areas
RegulatoryElementLayer regulatoryElementLayer; //!< access to regElems
PolygonLayer polygonLayer; //!< access to the polygons
LineStringLayer lineStringLayer; //!< access to the lineStrings
PointLayer pointLayer; //!< access to the points
};
class LaneletLayer : public PrimitiveLayer<Lanelet> {
public:
using PrimitiveLayer::findUsages;
LaneletLayer() = default;
~LaneletLayer() = default;
LaneletLayer(const LaneletLayer&) = delete;
LaneletLayer operator=(LaneletLayer&) = delete;
Lanelets findUsages(const RegulatoryElementConstPtr& regElem);
ConstLanelets findUsages(const RegulatoryElementConstPtr& regElem) const;
<...>
};
Each PrimitiveLayer owns a field named tree_ that contains a lookup table named usage of type UsageLookup,
template <typename T>
class PrimitiveLayer {
public:
<...>
/**
* @brief finds usages of an owned type within this layer
*
* This is the non-const version to find usages of a primitive in a layer.
*/
std::vector<PrimitiveT> findUsages(const traits::ConstPrimitiveType<traits::OwnedT<PrimitiveT>>& primitive);
<...>
struct Tree;
// NOLINTNEXTLINE
std::unique_ptr<Tree> tree_; //!< Hides boost trees from you/the compiler
template <typename T>
struct PrimitiveLayer<T>::Tree {
using TreeNode = std::pair<BoundingBox2d, T>;
using RTree = bgi::rtree<TreeNode, bgi::quadratic<16>>;
static TreeNode treeNode(const T& elem) { return {geometry::boundingBox2d(to2D(elem)), elem}; }
<...>
RTree rTree;
UsageLookup<T> usage;
};
and UsageLookup contains reference relation between different types as std::unordered_multimap.
template <>
struct UsageLookup<Lanelet> {
void add(Lanelet ll) {
ownedLookup.insert(std::make_pair(ll.leftBound(), ll));
ownedLookup.insert(std::make_pair(ll.rightBound(), ll));
for (const auto& elem : ll.regulatoryElements()) {
regElemLookup.insert(std::make_pair(elem, ll));
}
}
std::unordered_multimap<ConstLineString3d, Lanelet> ownedLookup;
std::unordered_multimap<RegulatoryElementConstPtr, Lanelet> regElemLookup;
};
Thus the complexity of findUsage function is equal to that of std::unordered_multimap::equal_range which is \(O(1)\).
template <typename T>
std::vector<typename PrimitiveLayer<T>::ConstPrimitiveT> PrimitiveLayer<T>::findUsages(
const traits::ConstPrimitiveType<traits::OwnedT<PrimitiveLayer<T>::PrimitiveT>>& primitive) const {
return forEachMatchInMultiMap<traits::ConstPrimitiveType<typename PrimitiveLayer<T>::PrimitiveT>>(
tree_->usage.ownedLookup, primitive, [](const auto& elem) { return traits::toConst(elem.second); });
}
template <typename T, typename MapT, typename KeyT, typename Func>
std::vector<T> forEachMatchInMultiMap(const MapT& map, const KeyT& key, Func&& f) {
auto range = map.equal_range(key);
return utils::transform(range.first, range.second, f);
}
Test maps#
Test maps are structured based on the Autoware Vector map specifications.
All of the maps are in MGRS coordinate without map_projector_info.yaml. In each map, an anchor point is set to an origin point \((100.0, 100.0)\) for simplicity.
| Map name | Origin point id | Image/Description |
|---|---|---|
vm_01_10-12/dense_centerline/lanelet2_map.osm |
16 |
![]() |
vm_01_10-12/straight_waypoint/lanelet2_map.osm |
1 |
TODO |
vm_01_10-12/valid_01/lanelet2_map.osm |
16 |
![]() The start/end of centerline is exactly on the edge of Lanelet border, and consecutive center lines are connected. Speed limits are set as annotated. |
vm_01_10-12/valid_02/lanelet2_map.osm |
16 |
![]() Consecutive center lines are not connected. |
vm_01_10-12/valid_03/lanelet2_map.osm |
16 |
![]() The start of the center lines are off the border. |
vm_01_10-12/valid_04/lanelet2_map.osm |
16 |
![]() The end of the center lines are off the border. |
vm_01_10-12/valid_05/lanelet2_map.osm |
16 |
![]() The start/end of the center lines are off the border(Consecutive center lines are connected). |
vm_01_10-12/valid_06/lanelet2_map.osm |
16 |
![]() The start/end of the center lines are off the border(Consecutive center lines are connected). |
vm_01_10-12/invalid_01/lanelet2_map.osm |
16 |
Any of centerline points except for start/end are outside of the associated Lanelet. |
vm_01_15-16/highway/lanelet2_map.osm |
1 |
![]() |
vm_01_15-16/pudo/lanelet2_map.osm |
140 |
![]() |
vm_01_15-16/loop/lanelet2_map.osm |
23 |
![]() |
vm_02/lanelet2_map.osm |
TODO | |
vm_03/left_hand/lanelet2_map.osm |
1791 |
![]() |
vm_03/right_hand/lanelet2_map.osm |
TODO | TODO |
vm_06_01/lanelet2_map.osm |
15 |
![]() |
How to craft test map#
On the VMB, create the map in MGRS system and save the file as <input_map.osm>. Next, select the point to set as origin, get its <ID> and run
ros2 run autoware_lanelet2_utils lanelet_anonymizer.py <input_map.osm> <output_map.osm> <ID>
Then the coordinate of the specified point is (100, 100) on the loaded map(NOTE: not exactly (0, 0) because MGRS does not any point to have negative coordinate value).
By applying lanelet_id_aligner.py, the primitive ids are aligned to start from 1 and increase one-by-one.
ros2 run autoware_lanelet2_utils lanelet_id_aligner.py <input_map.osm>
Finally, to fix lat/lon value of the map, upload the map on VMB, then export it again.
Tested case#
test_data contains test scene yaml files describing the context of unit tests. They can be visualized
ros2 run autoware_lanelet2_utils test_case_generator.py --view <file name>
| File | Tested specs | Image |
|---|---|---|
test_route_manager_001.yaml |
During lane change, current_route_lanelet is updated longitudinally. To update current_route_lanelet after lane change, RouteManager::commit_lane_change needs to be called |
|
test_route_manager_002.yaml |
During swerving maneuver like parked vehicle avoidance, RouteManager::commit_lane_change is not expected to be called. So current_pose of RouteManager may not be on current_route_lanelet |











